Combining Heuristics and Learning for Entity Linking

نویسنده

  • Hien T. Nguyen
چکیده

Entity linking refers to the task of mapping name strings in a text to their corresponding entities in a given knowledge base. It is an essential component in natural language understanding applications, but a challenging task. This paper proposes a method that combines heuristics and learning for entity linking by (i) learning coherence among co-occurrence entities within the text based on Wikipedia’s link structure and (ii) exploiting some heuristics based on the contexts and coreference relations among name strings. The experiment results on TAC-KBP2011 dataset show that our method achieves performance comparable to the state-of-the-art methods. The results also show that the proposed model is simple because of using a classifier trained on just two popular features in combination with some heuristics, but effective.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Transitive Closure on the Calibration of Logistic Regression for Entity Resolution

This paper describes a series of experiments in using logistic regression machine learning as a method for entity resolution. From these experiments the authors concluded that when a supervised ML algorithm is trained to classify a pair of entity references as linked or not linked pair, the evaluation of the model’s performance should take into account the transitive closure of its pairwise lin...

متن کامل

An Optimal Approach to Local and Global Text Coherence Evaluation Combining Entity-based, Graph-based and Entropy-based Approaches

Text coherence evaluation becomes a vital and lovely task in Natural Language Processing subfields, such as text summarization, question answering, text generation and machine translation. Existing methods like entity-based and graph-based models are engaging with nouns and noun phrases change role in sequential sentences within short part of a text. They even have limitations in global coheren...

متن کامل

Estimating the Parameters for Linking Unstandardized References with the Matrix Comparator

This paper discusses recent research on methods for estimating configuration parameters for the Matrix Comparator used for linking unstandardized or heterogeneously standardized references. The matrix comparator computes the aggregate similarity between the tokens (words) in a pair of references. The two most critical parameters for the matrix comparator for obtaining the best linking results a...

متن کامل

Weasel: a Machine Learning Based Approach to Entity Linking combining different features

The task of entity linking consists in disambiguating named entities occurring in textual data by linking them to an identifier in a knowledge base that represents the real-world entity they denote. We present Weasel, a novel approach that is based on a combination of different features that is trained using a Support Vector Machine. We compare our approach to state-of-the-art tools such as FOX...

متن کامل

Strong Baselines for Simple Question Answering over Knowledge Graphs with and without Neural Networks

We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the SIMPLEQUESTIONS dataset, we find that baseline LSTMs and G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013